The Method of Fundamental Solutions for Two-Dimensional Elastostatic Problems with Stress Concentration and Highly Anisotropic Materials

نویسندگان

چکیده

The method of fundamental solutions (MFS) is a boundary-type and truly meshfree method, which recognized as an efficient numerical tool for solving boundary value problems. geometrical shape, conditions, applied loads can be easily modeled in the MFS. This capability makes MFS particularly suitable shape optimization, moving load, inverse However, it observed that standard lead to inaccurate some elastostatic problems with stress concentration and/or highly anisotropic materials. In this work, by study, important parameters, have significant influence on accuracy analysis two-dimensional problems, are investigated. studied parameters degree anisotropy problem, ratio number collocation points source points, distance between main pseudo boundaries. It material increases, there will more errors results. also simple increasing boundaries enhances results; however, not case complicated Moreover, concluded than significantly improve

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

semi-analytical solution for static and forced vibration problems of laminated beams through smooth fundamental functions method

در این پایان نامه روش جدیدی مبتنی بر روش حل معادلات دیفرانسیل پارهای بر اساس روش توابع پایه برای حل مسایل ارتعاش اجباری واستاتیک تیرها و صفحات لایه ای ارایه شده است که می توان تفاوت این روش با روش های متداول توابع پایه را در استفاده از توابع هموار در ارضاء معادلات حاکم و شرایط مرزی دانست. در روش ارایه شده در این پایاننامه از معادله تعادل به عنوان معادله حاکم بر رفتار سیستم استفاده شده است که مو...

15 صفحه اول

The method of fundamental solutions for three-dimensional elastostatics problems

We consider the application of the method of fundamental solutions to isotropic elastostatics problems in three space dimensions. The displacements are approximated by linear combinations of the fundamental solutions of the Cauchy–Navier equations of elasticity, which are expressed in terms of sources placed outside the domain of the problem under consideration. The final positions of the sourc...

متن کامل

The method of fundamental solutions for transient heat conduction in functionally graded materials: some special cases

In this paper, the Method of Fundamental Solutions (MFS) is extended to solve some special cases of the problem of transient heat conduction in functionally graded materials. First, the problem is transformed to a heat equation with constant coefficients using a suitable new transformation and then the MFS together with the Tikhonov regularization method is used to solve the resulting equation.

متن کامل

Elzaki transform method for finding solutions to two-dimensional elasticity problems in polar coordinates formulated using Airy stress functions

In this paper, the Elzaki transform method is used for solving two-dimensional (2D) elasticity problems in plane polar coordinates. Airy stress function was used to express the stress compatibility equation as a biharmonic equation. Elzaki transform was applied with respect to the radial coordinate to a modified form of the stress compatibility equation, and the biharmonic equation simplified t...

متن کامل

A method of fundamental solutions for two-dimensional heat conduction

Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online. (Received) We investigate an application of the method of fundamental solutions (MFS) to heat conduction in two-dimensional bodies, where the thermal diffusivity is piecewise constant. We extend the MFS proposed in [15] for one-dimensional heat ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cmes-computer Modeling in Engineering & Sciences

سال: 2022

ISSN: ['1526-1492', '1526-1506']

DOI: https://doi.org/10.32604/cmes.2022.018235